
Gaussian Correlation Inequality

Let µ be a centered Gaussian measure on Rd. The statement of the Gaussian correlation
inequality is as follows.

Theorem 1 (Royen [5]). For any convex symmetric sets K,L in Rd,

µ(K ∩ L) ≥ µ(K)µ(L). (1)

For d = 2 the result was proved by Pitt [4]. In the case when one of the sets K,L is
a symmetric strip (which corresponds to min{n1, n2} = 1 in Theorem 2 below) inequality
(1) was established independently by Khatri [3] and Šidák [7]. Hargé [2] generalized the
Khatri-Šidak result to the case when one of the sets is a symmetric ellipsoid. Some other
partial results may be found in papers of Borell [1] and Schechtman, Schlumprecht and
Zinn [6].

Since any symmetric convex set is a countable intersection of symmetric strips, it is
enough to show (1) in the case when

K =
{
x ∈ Rd | ∀1≤i≤n1 |〈x, vi〉| ≤ ti

}
,

L =
{
x ∈ Rd | ∀n1<i≤n1+n2 |〈x, vi〉| ≤ ti

}
,

where vi are vectors in Rd and ti nonnegative numbers. If we set n = n1 +n2, Xi := 〈vi, G〉,
where G is the Gaussian random vector distributed according to µ, we obtain the following
equivalent form of Theorem 1.

Theorem 2. For any t1, . . . , tn > 0,

P
(
|X1| ≤ t1, . . . , |Xn| ≤ tn

)
≥ P

(
|X1| ≤ t1, . . . , |Xn1 | ≤ tn1

)
× P

(
|Xn1+1| ≤ tn1+1, . . . , |Xn| ≤ tn

)
.

Royen established this result for a more general class of random vectors X such that
X2 = (X2

1 , . . . , X
2
n) has an n–variate gamma distribution (see [5] for details). We will

emphasize important ideas in the proof of Theorem 2 by breaking it into several steps.

Notation. By N (0, C) we denote the centered Gaussian measure with the covariance
matrix C. For a matrix A = (aij)i,j≤n, we denote by |A| the determinant of A. Given any
subset J ⊂ [n] := {1, . . . , n}, we denote by AJ the square matrix (aij)i,j∈J and by |J | the
cardinality of J .

Interpolation. Without loss of generality we may and will assume that the covariance
matrix C of X is strictly positive-definite. We may write C as

C =

[
C11 C12

C21 C22

]
,
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where Cij is the ni × nj matrix. The idea of interpolation for Gaussian distributions is
ubiquitous and, probably, this first step has been tried by everyone who spent time thinking
about this problem.

Let us consider an interpolation parameter 0 ≤ τ ≤ 1 and let

C(τ) :=

[
C11 τC12

τC21 C22

]
(2)

If we denote by X(τ) the Gaussian random vector with the distribution N (0, C(τ)) then
Theorem 2 is equivalent to

P
(
|X1(1)| ≤ t1, . . . , |Xn(1)| ≤ tn

)
≥ P

(
|X1(0)| ≤ t1, . . . , |Xn(0)| ≤ tn

)
.

This will be done by showing that the function

τ 7→ P
(
|X1(τ)| ≤ t1, . . . , |Xn(τ)| ≤ tn

)
is nondecreasing on [0, 1].

Using symmetry. Next important idea is to utilize the symmetry of the constraints
Xi(τ) ∈ [−ti, ti]. This is done by squaring and rewriting them as Zi(τ) ∈ [0, si], where

Zi(τ) :=
1

2
Xi(τ)2, s1 :=

1

2
t2i . (3)

The factor 1/2 here simplifies notation later. We would like to show that the function

τ 7→ P
(
Z1(τ) ≤ s1, . . . , Zn(τ) ≤ sn

)
is nondecreasing on [0, 1]. Such a simple restatement is, in fact, quite a powerful way to
use the symmetry of the problem.

If f(x, τ) is the density of the random vector Z(τ) and K = [0, s1]× · · · × [0, sn],

P
(
Z1(τ) ≤ s1, . . . , Zn(τ) ≤ sn

)
=

∫
K
f(x, τ) dx. (4)

If we rewrite the covariance matrix C(τ) as[
C11 τC12

τC21 C22

]
= τ

[
C11 C12

C21 C22

]
+ (1− τ)

[
C11 0
0 C22

]
,

it is clear that it is uniformly strictly positive-definite over τ ∈ [0, 1] when C is non-
degenerate. In particular, the random vector X(τ) ∼ N (0, C(τ)) has the density

fC(τ)(x) =
1√

|C(τ)|(2π)n
exp
(
−1

2

〈
C(τ)−1x, x

〉)
.
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If we write

P
(
Z1(τ) ≤ x1, . . . , Z1(τ) ≤ xn

)
=

∫ √2x1

−
√

2x1

· · ·
∫ √2xn

−
√

2xn

fC(τ)(x) dx,

then taking derivatives in x1, . . . , xn, we see that the density of Z(τ) on (0,∞)n equals

f(x, τ) =
1√

|C(τ)|(4π)n
1

√
x1 · · ·xn

∑
ε∈{−1,1}n

exp
(
−
〈
C(τ)−1ε

√
x, ε
√
x
〉)
, (5)

where for ε ∈ {−1, 1}n and x ∈ (0,∞)n we set ε
√
x := (εi

√
xi)i≤n. Using this explicit

formula for the density, it is not difficult to show that

∂

∂τ
P
(
Z1(τ) ≤ s1, . . . , Zn(τ) ≤ sn

)
=

∂

∂τ

∫
K
f(x, τ) dx =

∫
K

∂

∂τ
f(x, τ) dx, (6)

i.e. one can interchange the derivative and integral.

Laplace transform. Next, we appeal to the following general principle,

“if you don’t know what to do, use Laplace transform”,

which deserves to be kept in mind as closely as another common rule

“if you don’t know what to do, integrate by parts”.

Using both principles, one can give an explicit formula for

∂

∂τ
f(x, τ) and

∫
K

∂

∂τ
f(x, τ) dx

by identifying the Laplace transform of the derivative,∫
(0,∞)n

e−
∑n
i=1 λixi

∂

∂τ
f(x, τ) dx.

We start again by interchanging the derivative and integral,

∂

∂τ

∫
(0,∞)n

e−
∑n
i=1 λixif(x, τ) dx.

If we denote Λ := diag(λ1, . . . , λn) then, by a standard computation,∫
(0,∞)n

e−Λxf(x, τ)dx = E exp
(
−1

2

∑
i≤n

λiX
2
i (τ)

)
= |I + ΛC(τ)|−1/2. (7)
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It is obvious (e.g. from the Leibniz formula for the determinant) that

|I + ΛC(τ)| = 1 +
∑
∅6=J⊂[n]

|(ΛC(τ))J | = 1 +
∑
∅6=J⊂[n]

|C(τ)J |
∏
j∈J

λj . (8)

Fix ∅ 6= J ⊂ [n]. Then J = J1 ∪ J2, where J1 := [n1] ∩ J , J2 := J \ [n1] and

C(τ)J =

[
CJ1 τCJ1J2

τCJ2J1 CJ2

]
.

If J1 = ∅ or J2 = ∅ then C(τ)J = CJ . Given a strictly positive-definite block matrix, we
can write[

A11 A12

A21 A22

]
=

[
A

1/2
11 0

0 A
1/2
22

][
In1 A

−1/2
11 A12A

−1/2
22

A
−1/2
22 A21A

−1/2
11 In2

][
A

1/2
11 0

0 A
1/2
22

]

and the matrix in the middle can be converted by elementary transformations to[
In1 −A

−1/2
11 A12A

−1
22 A21A

−1/2
11 0

0 In2

]
.

First of all, this implies that the determinant

|C(τ)J | = |CJ1 ||CJ2 |
∣∣I|J1| − τ2C

−1/2
J1

CJ1J2C
−1
J2
CJ2J1C

−1/2
J1

∣∣
= |CJ1 ||CJ2 |

∏
i≤|J1|

(
1− τ2µJ1,J2(i)

)
, (9)

where we denoted by µJ1,J2(i), 1 ≤ i ≤ |J1| the eigenvalues of

C
−1/2
J1

CJ1J2C
−1
J2
CJ2J1C

−1/2
J1

.

The above conversion by elementary transformations applied to C(1)J also shows that the
eigenvalues µJ1,J2(i) belong to [0, 1] so, for any ∅ 6= J ⊂ [n] and any τ ∈ [0, 1],

aJ(τ) := − ∂

∂τ
|C(τ)J | ≥ 0. (10)

Therefore,

∂

∂τ
|I + ΛC(τ)|−1/2 = −1

2
|I + ΛC(τ)|−3/2

∑
∅6=J⊂[n]

∂

∂τ
|C(τ)J ||ΛJ |

=
1

2
|I + ΛC(τ)|−3/2

∑
∅6=J⊂[n]

aJ(τ)
∏
j∈J

λj . (11)
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We have thus shown that the Laplace transform of the derivative ∂
∂τ f(x, τ) is∫

(0,∞)n
e−Λx ∂

∂τ
f(x, τ) dx =

∑
∅6=J⊂[n]

1

2
aJ(τ)|I + ΛC(τ)|−3/2

∏
j∈J

λj . (12)

Identifying the Laplace transform. To identify this Laplace transform, first of all,
recall that we saw above that |I + ΛC(τ)|−1/2 is the Laplace transform of Z(τ), or the
density f(x, τ), for which we also wrote down an explicit formula (5). As a result, if we
consider the convolution

hτ (x) := f(x, τ) ? f(x, τ) ? f(x, τ), (13)

which is the density of the sum Z1(τ)+Z2(τ)+Z3(τ) of three independent copies of Z(τ),
then the Laplace transform of hτ is equal to∫

(0,∞)n
e−Λxhτ (x) dx = |I + ΛC(τ)|−3/2. (14)

From here, one can guess that the quantity

|I + ΛC(τ)|−3/2
∏
j∈J

λj

in (12) is the Laplace transform of a function related to hτ . In fact, the factor
∏
j∈J λj

comes out from integration by parts, as follows. For example, by a formal integration by
parts gives ∫ ∞

0
e−Λx∂hτ

∂x1
dx1 = e−Λxhτ (x)

∣∣∣x1=∞

x1=0
+ λ1

∫ ∞
0
e−Λxhτ (x) dx1.

If we assume that the derivative ∂hτ
∂x1

is integrable, at infinity hτ (x) grows sub-exponentially,
and limx1↓0 hτ (x) = 0, then the first term on the right hand side disappears and, integrating
in the other coordinates, we get∫

(0,∞)n
e−Λx∂hτ

∂x1
dx = |I + ΛC(τ)|−3/2λ1.

If, for J ⊂ [n], we introduce the notation

∂Jhτ =
∂|J |hτ
∂xJ

(15)

then a similar formal computation, by induction, shows that∫
(0,∞)n

e−Λx∂Jhτ (x) dx = |I + ΛC(τ)|−3/2
∏
j∈J

λj , (16)
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assuming that all the derivatives of the form ∂Jhτ are integrable, at infinity they grow
sub-exponentially, and the limit

lim
xi↓0

∂Jhτ (x) = 0 for any i 6∈ J. (17)

We will discuss below why one can expect these properties to hold and how one can actually
prove them, but for now let us assume them to be true. Then (12) implies that

∂

∂τ
f(x, τ) =

∑
∅6=J⊂[n]

1

2
aJ(τ)∂Jhτ (x). (18)

Finishing the proof. Assuming the above properties of hτ (x) and its derivatives, by
integration by parts,∫

K
∂Jhτ (x) dx =

∫
∏
j∈Jc [0,sj ]

hτ (sJ , xJc) dxJc ≥ 0,

where Jc = [n] \ J and y = (sJ , xJc) if yi = si for i ∈ J and yi = xi for i ∈ Jc. This yields∫
K

∂

∂τ
f(x, τ) dx ≥ 0

and finishes the proof. What remains is to prove the above properties of hτ .

Intuition behind the properties of hτ (x). Recall that

hτ (x) = f(x, τ) ? f(x, τ) ? f(x, τ),

where f(x, τ) can be expressed as in (5). Notice that f(x, τ) has 1/
√
xi singularity at zero

along each coordinate. If the covariance C(τ) was identity, f(x, τ) would be a product

f(x, τ) =
∏
i≤n

1
√
πxi

e−xiI(xi > 0).

Each coordinate here has Γ(1/2, 1) distribution, and the k–fold convolution is the product
of Γ(k/2, 1) distributions. In particular, for k = 3 we would have

hτ (x) =
∏
i≤n

2√
π

√
xie
−xiI(xi > 0).

It is easy to see that the derivatives of the form ∂Jhτ are integrable and limxi↓0 ∂Jhτ (x) = 0
for any i 6∈ J because of the factor

√
xi. The problem of course is that the covariance C(τ)

is not identity, so the coordinates are correlated. We will see next that one can check these
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properties of hτ easily by utilizing the properties of noncentral chi-squared distributions,
but it would interesting to find a more straightforward way to obtain the properties of the
above 3–fold convolution knowing the behaviour of the singularities at zero.

Noncentral chi-squared distributions. We recall that f(x, τ) is the density of

Z(τ) =
1

2

(
X1(τ)2, . . . , Xn(τ)2

)
where X(τ) ∼ N (0, C(τ)), and we will obtain the properties of hτ (x) by ‘peeling off’
a standard Gaussian component with the identity covariance from X(τ) (this is where
noncentral chi-squared distributions and their properties come into play). Namely, since
C(τ) is strictly positive-definite, there exists a small enough δ > 0 such that C(τ)− δIn is
positive-definite. Consider independent Gaussian vectors

Y ∼ N
(
0, C(τ)− δIn

)
, g ∼ N (0, In),

so that X(τ) is equal in distribution to Y +
√
δg. Let Y ` and g` be their independent copies

for ` = 1, 2, 3. If we let

y` =
Y `

√
δ
, Z` =

δ

2

((
y`1 + g`1

)2
, . . . ,

(
y`n + g`n

)2)
(19)

then hτ is the density of Z1 +Z2 +Z3. One can rewrite this density as a mixture over the
distribution of (y1, y2, y3) of the conditional density of Z1 +Z2 +Z3 given (y1, y2, y3). For
a fixed (y1, y2, y3), the coordinates of Z1 + Z2 + Z3 become independent, so we first need
to compute the density of the conditional distribution of one coordinate(

y1
i + g1

i

)2
+
(
y2
i + g2

i

)2
+
(
y3
i + g3

i

)2
. (20)

This distribution is an example of noncentral chi-squared distribution, in this case with 3
degrees of freedom. Let us denote

gi = (g1
i , g

2
i , g

3
i ), yi = (y1

i , y
2
i , y

3
i ) and λi = ‖yi‖2. (21)

First, let us note that(
y1
i + g1

i

)2
+
(
y2
i + g2

i

)2
+
(
y3
i + g3

i

)2 d
=
(√

λi + g1
i

)2
+ (g2

i )
2 + (g3

i )
2. (22)

Indeed, if we take an orthogonal transformation Q such that Qyi = ‖yi‖e1 then we can
write the left hand side as

‖yi‖2 + 2〈yi, gi〉+ ‖gi‖2 = ‖yi‖2 + 2〈Qyi, Qgi〉+ ‖Qgi‖2

= ‖yi‖2 + 2‖yi‖〈e1, Qgi〉+ ‖Qgi‖2

d
= ‖yi‖2 + 2‖yi‖〈e1, gi〉+ ‖gi‖2

=
(√

λi + g1
i

)2
+ (g2

i )
2 + (g3

i )
2.
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This shows that the noncentral chi-squared distribution depends on the shift parameters
in yi only through λi = ‖yi‖2, which is called the noncentrality parameter.

Let us compute the density of (
√
λ+ g)2 for λ ≥ 0 and g ∼ N (0, 1). Since

P
(
(
√
λ+ g)2 ≤ x

)
= P

(
−
√
x−
√
λ ≤ g ≤

√
x−
√
λ
)

for x > 0, taking the derivative in x, the density on (0,∞) equals

1√
2πx

e−(x+λ)/2 cosh(
√
λx) =

1√
2πx

e−(x+λ)/2
∑
k≥0

xkλk

(2k)!
.

It is a well-known property of the gamma function that

Γ(k + 1/2) =
21−2k√πΓ(2k)

Γ(k)
=

√
π(2k)!

22kk!
,

so if we denote the density of Γ(k + 1/2, 1/2) distribution by

Γ(k + 1/2, 1/2;x) =
(1/2)k+1/2

Γ(k + 1/2)
xk+1/2−1e−x/2

then the density of (
√
λ+ g)2 can be rewritten as

∑
k≥0

(λ/2)k

k!
e−λ/2Γ(k + 1/2, 1/2;x). (23)

Remark. It is interesting to observe that, since Γ(k + 1/2, 1/2) is a χ2
1+2k–distribution

with 1 + 2k degrees of freedom, this representation for the density implies that

(
√
λ+ g)2 d

= g2
1 + . . .+ g2

1+2M ,

where M has the Poisson distribution Poiss(λ/2) with the mean λ/2.

From the above representation, since the distribution of (g2
i )

2 + (g3
i )

2 is Γ(1, 1/2), the
density of the distribution of (√

λi + g1
i

)2
+ (g2

i )
2 + (g3

i )
2

conditionally on λi = ‖yi‖2 is equal to

p(λi, x) :=
∑
k≥0

(λi/2)k

k!
e−λi/2Γ(k + 3/2, 1/2;x). (24)
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This implies that the density of

Z1 + Z2 + Z3 =
3∑
`=1

δ

2

((
y`1 + g`1

)2
, . . . ,

(
y`n + g`n

)2)
conditionally on (y1, y2, y3) is equal to∏

i≤n

2

δ
p
(
λi,

δxi
2

)
and the unconditional density hτ (x) equals

hτ (x) = E
∏
i≤n

2

δ
p
(
λi,

δxi
2

)
, (25)

where the expectation is with respect to y1, y2, y3, which can be also written as

hτ (x) =
∑

k1,...,kn≥0

E
∏
i≤n

(λi/2)ki

ki!
e−λi/2Γ(ki + 3/2, 1/2;xi). (26)

If we introduce the notation

pk1,...,kn := E
∏
i≤n

(λi/2)ki

ki!
e−λi/2 (27)

then, obviously,
∑

k1,...,kn≥0 pk1,...,kn = 1, so we can rewrite hτ (x) as a mixture

hτ (x) =
∑

k1,...,kn≥0

pk1,...,kn
∏
i≤n

Γ(ki + 3/2, 1/2;xi). (28)

Using this representation, it is now easy to check the properties of hτ (x) used in the proof
above, because each factor

Γ(ki + 3/2, 1/2;xi) =
(1/2)ki+1/2

Γ(ki + 1/2)
x
ki+3/2−1
i e−xi/2

is zero at xi = 0 and

∂

∂xi
Γ(ki + 3/2, 1/2;xi) = Γ(ki + 1/2, 1/2;xi)−

1

2
Γ(ki + 3/2, 1/2;xi),

so the integrability and the fact that limxi↓0 ∂Jhτ (x) = 0 for any i 6∈ J should not be
difficult to check.
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